杨晓燕,现任皇冠正规娱乐平台教授、博士生导师、校学术委员、美国《Math.Review》评论员。2019.01--2020.1在美国犹他大学访问学习。主要研究方向是环的同调理论,已完成SCI学术论文近40篇。入选2013年度教育部“新世纪优秀人才支持计划”;入选甘肃省第三批“飞天学者特聘计划”青年学者;入选2020年陇原青年创新创业人才个人项目。主持完成青年科学基金和地区科学基金项目各1项;承担地区科学基金项目1项;主持完成中国博士后科学基金项目1项;参与国家自然科学基金项目3项(排名分别为第三、第二、第二);主持西北师范大学青年教师科研能力提升计划创新团队项目1项。作为牵头人,获甘肃省高校科技进步二等奖2次,一等奖1次; 作为第一参与人,获甘肃省自然科学三等奖1次。
主要科研论文:
[1]Yang Xiaoyan and Liu Zhongkui, Strongly Gorenstein projective, injective and flat modules, Journal of Algebra, 320 (2008) 2659–2674.
[2]Liu Zhongkui and Yang Xiaoyan, Left APP-property of formal power series rings, Archivum Mathematicum (Brno), 44 (2008) 185-189.
[3]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat modules, J. Aust. Math. Soc., 87 (2009) 395-407.
[4]Yang Xiaoyan and Liu Zhongkui, FP-injective complexes, Comm. Algebra, 38 (2010) 131-142.
[5]Liu Zhongkui and Yang Xiaoyan, On annihilator ideals of skew monoid rings, Glasgow Math. J., 52 (2010) 161-168.
[6]Yang Xiaoyan and Liu Zhongkui, C-Gorenstein projective, injective and flat modules, Czechoslovak Math. J., 60 (2010) 1109-1129.
[7]Yang Xiaoyan and Liu Zhongkui, D-Gorenstein projective, injective and flat modules, Algebra Colloq., 18 (2011) 273-288.
[8]Yang Xiaoyan and Liu Zhongkui, n-flat and n-FP injective modules, Czechoslovak Math. J., 61 (2011) 359-369.
[9]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat complexes, Comm. Algebra 39 (2011) 1705-1721.
[10]Di Zhenxing and Yang Xiaoyan, Transfer properties of Gorenstein homological dimension with respect to a semidualizing module,J. Korean Math. Soc. 49 (2012)1197-1214.
[11]Yang Xiaoyan and Liu zhongkui, V-Gorenstein projective, injective and flat modules, Rocky Mt. J. Math., 42 (2012) 2075-2098.
[12]Yang Xiaoyan and Liu ZHongkui, DG-projective, injective and flat complexes, Algebra Colloq. 20 (2013) 155-162.
[13]Yang Xiaoyan and Zhao Jianlian, Gorenstein flat and cotorsion dimensions of unbounded complexes, Comm. Algebra 41 (2013) 2978-2990.
[14]Yang Xiaoyan, Notes on proper class of triangles, Acta Mathematica Sinica, English Series 29 (2013) 2137-2154.
[15]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math., 38 (2014) 819-832.
[16]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[17]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[18]Yang Xiaoyan and Liu Zhongkui, On nonnil-noetherian rings, Southeast Asian Bull. Math., 33 (2009) 1215-1223.
[19]Liu Zhongkui and Yang Xiaoyan, Triangular matrix representations of skew monoid rings, Math. J. Okayama Univ., 52 (2010) 97-109.
[20]Yang Xiaoyan and Liu Zhongkui, FP-gr-injective modules, Math. J. Okayama Univ., 53 (2011) 83-100.
[21]Yang Xiaoyan, Gorenstein homological dimensions and change of rings, Journal of Mathematical Research with Applications, 32 (2012) 571-581.
[22]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math. 38 (2014) 819-832.
[23]Yang Xiaoyan, n-strongly Gorenstein projective and injective and flat modules, Chin. Quart. J. Math. 29 (2014) 553-564.
[24]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[25]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[26]Yang Xiaoyan and Wang Junpeng, The existence of homotopy resolutions of N-complexes, Homology, Homotopy Appl. 17 (2015) 291–316.
[27]Yang Xiaoyan and Ding Nanqing, On a question of Gillespie, Forum Math. 27 (2015) 3205–3231.
[28]Yang Xiaoyan, Gorenstein categories G(X ,Y ,Z ) and dimensions, Rocky Mt. J. Math. 45 (2015) 2043-2064.
[29]Yang Xiaoyan, W-resolutions and Gorenstein categories with respect to a semidualizing, J. Korean Math. Soc. 53 (2016) 1-17.
[30]Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Depth for triangulated categories, Bull. Korean Math. Soc. 53 (2016) 551–559.
[31] Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Vanishing of Tate homology — an application of stable homology for complexes, Acta Mathematica Sinica, English Series 32 (2016) 831–844.
[32] Yang Xiaoyan,Wang Zhicheng, Proper resolutions and Gorensteinness in triangulated categories, Rocky Mt. J. Math. 47 (2017) 1013-1053.
[33] Yang Xiaoyan, Chen Wenjing, Relative homological dimensions and Tate
cohomology of complexes with respect to cotorsion pairs, Comm. Algebra 45 (2017) 2875–2888.
[34] Yang Xiaoyan, Cao Tianya, Cotorsion Pairs in CN(A ), Algebra Colloq. 24 (2017) 577-602.
[35] Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Complete flat resolutions, Tate homology and the depth formula, Kodai Math. J. 40 (2017) 1–15.
[36] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Singularity Categories with Respect to Ding Projective Modules, Acta Mathematica Sinica, English Series, 33 (2017) 793–806.
[37] Wang Chao and Yang Xiaoyan, (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras, Czechoslovak Math. J. 67 (2017) 1031-1048.
[38]Zhenxing Di, Zhongkui Liu, Xiaoyan Yang, Xiaoxiang Zhang, Triangulated equivalence between a homotopy category and a triangulated quotient category, J. Algebra 506(2018)297-321.
[39] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Compactly generated triangulated subcategories of homotopy categories induced by cotorsion pairs, Journal of Algebra and Its ApplicationsVol. 17 (10) (2018) 1850180 (14 pages).
[40] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Recollements associated to cotorsion pairs, Journal of Algebra and Its Applications 17 (1) (2018) 11850141 (15 pages).
[41] Zhang Wanru, Liu Zhongkui and Yang Xiaoyan, Foxby equivalences associated to strongly Gorenstein modules, Kodai Math. J. 41 (2018) 397–412.
[42] Zhang Wanru, Liu Zhongkui and Yang Xiaoyan, Foxby equivalences associated to Gorenstein categories G(X,Y,Z), Comm. Algebra 46 (2018) 4042–4051.
[43] Cao Tianya, Liu Zhongkui and Yang Xiaoyan, Derived category with respect to Gorenstein AC-projective modules, Kodai Math. J. 41 (2018) 579–590.
[44] 汪军鹏,刘仲奎,杨晓燕, Gillespie 所提出一个问题的否定回答, 48 (2018) 1121–1130.
[45] Xie Zongyang,Yang Xiaoyan, The homotopy ctegories of N-complexes of injectives and projectives, J. Korean Math. Soc. 56 (2019) 623-644.
[46] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, A new method to construct model structures from a cotorsion pair, Comm. Algebra 47(2019) 4420-4431.
[47] 曹天涯,刘仲奎,杨晓燕, 纯奇点范畴中的Buchweitz定理, 数学学报4(2019)553-560.
[48] Yang Xiaoyan, Rao Yanping, Depth and amplitude for DG-modules, Comm. Algebra 48 (2020) 2051-2064
[49] Yang Xiaoyan,Wang Li, Homological invariants over non-positive DG-rings, Journal of Algebra and Its ApplicationsVol. 19 (10) (2020) 1850180 (18 pages).
[50] 陈文静,刘仲奎,杨晓燕, 相对于 G(X ) 的导出范畴, 50 (2020) 1121–1130.
项目:
[1]杨晓燕、吴德军、王欣欣,西北师范大学三期“知识与科技创新工程”科研骨干培育项目,批准号:NWNU-KJCXGC-03-68,2010.01—2011.12。
[2]杨晓燕、乔虎生、吴德军,Hopf代数上的Gorenstein同调性质,青年科学基金项目,批准号:11001222,2011.01—2013.12。
[3]刘仲奎、赵仁育、杨晓燕、王占平、张文汇、张春霞,复形范畴中的Gorenstein同调维数,国家自然科学基金项目,批准号:10961021, 2010.01—2012.12。
[4]杨晓燕、刘仲奎、赵仁育、张翠萍,同伦范畴的recollement、余(t)-结构和同调维数理论, 国家自然科学基金项目,批准号:10361051,2014.01—2017.12。
[5]杨晓燕,Grothendieck范畴中复形的同调维数,中国博士后科学基金项目,批准号:BK201106,8 2011.09—2014.02。
[6]杨晓燕,新世纪优秀人才支持计划, 教育部,批准号:NCET-13-0957,2014.01—2016.12。
[7]国家自然科学基金项目:广义幂级数环理论研究,起止年月:2014.1—2017.12 (参与)。
[8] 杨晓燕, 入选甘肃省第三批“飞天学者特聘计划”青年学者。
[9] 杨晓燕,“三角范畴的支撑和余支撑”入选陇原青年创新创业人才个人项目,2020.03—2021.02。
[10] 杨晓燕,张翠萍,武斌, 微分分次范畴的同调维数、recollements和Morita理论, 国家自然科学基金项目,批准号:11761060, 2018.01—2021.12。
[11] 杨晓燕,任伟,王占平,赵仁育,狄振兴,张文汇,张翠萍,环的同调理论,西北师范大学青年教师科研能力提升计划创新团队项目,批准号: NWNU-LKQN-16-5 2017.01—2019.12。
获奖:
[1]杨晓燕、刘仲奎、张文汇、张春霞、王占平,模范畴和复形范畴中的Gorenstein同调性质,甘肃省高校科技进步二等奖,2010年。
[2]杨晓燕、吴德军、刘仲奎、赵仁育、杨刚、王占平, Gorenstein同调复形及余挠理论, 甘肃省科技厅,甘肃省高校科技进步奖,二等奖,2012。
[3]刘仲奎、杨晓燕、赵仁育、乔虎生、张春霞,复形的相对同调代数,甘肃省科技厅,甘肃省自然科学奖,三等奖,2013。
[4]杨晓燕、赵仁育、王占平、乔虎生、任伟,复形的 Gorenstein同调维数及Ding导出范畴, 甘肃省科技厅,甘肃省高校科技进步奖,一等奖,2014。