个 人 简 介
冯斌华,男,1985年生于甘肃省通渭县。2013年6月博士毕业于兰州大学(硕博连读),导师是钟承奎教授和赵敦教授。2013年7月到皇冠正规娱乐平台工作。现为皇冠正规娱乐平台教授,博士生导师,美国数学会《Math Review》评论员。
研究方向为非线性分析与偏微分方程。已在SIAM J. Control Optim.、J.Differential Equations、 J. Dynam. Differential Equations、J. Evolution Equations、Discrete Contin. Dyn. Syst.、Commun. Pure Appl. Anal.、J. Math. Phys.、Discrete Contin. Dyn. Syst. Ser. B、Nonlinear Anal.等分析类和方程类权威杂志上发表SCI论文40余篇,其中其中SCI一区论文4篇,二区论文10余篇,ESI高被引论文6篇,特别地,SIAM J. Control Optim.是控制学科公认的三大国际顶级期刊之一。先后主持国家自然科学基金2项,2020年获得甘肃省杰出青年基金。参与国家自然科学基金面上项目2项,青年基金2项。作为主要成员获得甘肃省自然科学一等奖一次,连续两届入选西北师范大学教学科研之星计划。担任J.Differential Equations、Nonlinearity、ZAMP等20余种SCI杂志的审稿人。
科研项目:
9.国家自然科学基金青年项目天元数学访问学者项目,12026259,带Hardy位势的薛定谔方程驻波解的轨道稳定性,2021/01-2021/12,主持
8.甘肃省杰出青年基金,非线性薛定谔方程,20JR10RA111,2021/01-2023/12,主持
7. 国家自然科学基金青年项目,11601435,两类非线性薛定谔方程的最优控制问题,2017/01-2019/12,主持
6.国家自然科学基金面上项目,11671322,一般区域上Minkowsky空间中平均曲率方程研究,2017/01-2020/12,参加、第三
5.国家自然科学基金青年项目,11501455,具有非局部初始条件的抽象发展方程解的存在性和渐近性态,2016/01-2018/12,参加、第二
4.国家自然科学基金青年项目,11401478,非单调的时滞非局
部扩散方程和系统的行波解,2015/01-2017/12,参加、第二
3.国家自然科学基金面上项目,11171028,与变分法有关的椭圆型方程与方程组问题,2012/01-2015/12,参加、第三
2.甘肃省自然科学基金,带阻尼薛定谔方程的研究,2016/06-2018/12,主持
1. 甘肃省高等学校科研项目,X射线自由电子激光薛定谔方程的其次和问题,2016/01-2017/12,主持
科研获奖:
2018年项目“几类非线性方程解的分歧、爆破及行波的波速”获甘肃省自然科学一等奖
科研论文:
[29]Liu, Jiayin; He, Zhiqian; Binhua Feng*, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement. J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 125604, 20 pp.
[28]Binhua Feng*, Wang, Qingxuan Strong instability of standing waves for the nonlinear Schrödinger equation in trapped dipolar quantum gases. J. Dynam. Differential Equations 33 (2021), no. 4, 1989–2008.
[27]Binhua Feng*, Saanouni, Tarek On damped non-linear Choquard equations. Bol. Soc. Mat. Mex. (3) 27 (2021), no. 2, Paper No. 48, 34 pp.
[26]Binhua Feng*, Zhu, Shihui Stability and instability of standing waves for the fractional nonlinear Schrödinger equations. J. Differential Equations 292 (2021), 287–324.
[25]Binhua Feng*, Cao, Leijin; Liu, Jiayin Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation. Appl. Math. Lett. 115 (2021), Paper No. 106952, 7 pp.
[24]Binhua Feng*, Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. Adv. Nonlinear Anal. 10 (2021), no. 1, 311–330.
[23]Binhua Feng*, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrodinger-Poisson equation in the L2-critical case, Journal of Dynamics and Differential Equations, J. Dynam. Differential Equations 32 (2020), no. 3, 1357–1370.
[22]Binhua Feng*, Dun Zhao, Optimal bilinear control for the XFEL Schr\"{o}dinger equation, SIAM J. Control Optim. 57 (2019), 3193–3222.
[21]Binhua Feng*, R. Chen, J. Ren, Existence of stable standing waves for the fractional Schr\"{o}dinger equations with combined power-type and Choquard-type nonlinearities, Journal of Mathematical Physics, 60 (2019), no. 5, 051512, 12 pp.
[20]Van Duong Dinh, Binhua Feng*, On fractional nonlinear Schr\"odinger equation with combined power-type nonlinearities, Discrete and Continuous Dynamical Systems, 2019, 39(8): 4565-4612.(中科院三区、JCR一区)
[19] Wang, Kai; Zhao, Dun; Binhua Feng, Optimal bilinear control of the coupled nonlinear Schrödinger system. Nonlinear Anal. Real World Appl.47 (2019), 142–167.
[18] Binhua Feng*, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186.
[17] Binhua Feng*,Ren, Jiajia; Wang, Kai Blow-up in several points for the Davey-Stewartson system in R^2. J. Math. Anal. Appl.466 (2018), no. 2, 1317–1326.
[16] Zheng, Jun; Binhua Feng,Zhao, Peihao A remark on the two-phase obstacle-type problem for the p-Laplacian. Adv. Calc. Var.11 (2018), no. 3, 325–334.
[15] Binhua Feng*, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Pure Appl. Anal.17 (2018), no. 5, 1785–1804.
[14] Binhua Feng*,Zhang, Honghong Stability of standing waves for the fractional Schrödinger-Choquard equation. Comput. Math. Appl.75 (2018), no. 7, 2499–2507.
[13] Binhua Feng*, On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities. J. Evol. Equ.18 (2018), no. 1, 203–220.
[12] Binhua Feng*, Yuan, Xiangxia; Zheng, Jun Global well-posedness for the Gross-Pitaevskii equation with pumping and nonlinear damping. Z. Anal. Anwend.37 (2018), no. 1, 73–82.
[11] Binhua Feng*,Zhang, Honghong Stability of standing waves for the fractional Schrödinger-Hartree equation. J. Math. Anal. Appl.460 (2018), no. 1, 352–364.
[10] Binhua Feng*, Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials. Nonlinear Anal.156 (2017), 275–285.
[9] Binhua Feng*,Wang, Kai Optimal bilinear control of nonlinear Hartree equations with singular potentials. J. Optim. Theory Appl.170 (2016), no. 3, 756–771.
[8] Binhua Feng*, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential. Nonlinear Anal. Real World Appl.31 (2016), 132–145.
[7] Binhua Feng*,Zhao, Dun Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials. J. Differential Equations260 (2016), no. 3, 2973–2993.
[6] Binhua Feng*,Yuan, Xiangxia On the Cauchy problem for the Schrödinger-Hartree equation. Evol. Equ. Control Theory4 (2015), no. 4, 431–445.
[5]Binhua Feng*,Cai, Yuan Concentration for blow-up solutions of the Davey-Stewartson system in R 3. Nonlinear Anal. Real World Appl.26 (2015), 330–342.
[4] Binhua Feng*,Zhao, Dun; Sun, Chunyou Homogenization for nonlinear Schrödinger equations with periodic nonlinearity and dissipation in fractional order spaces. Acta Math. Sci. Ser. B (Engl. Ed.)35 (2015), no. 3, 567–582.
[3] Binhua Feng*,Zhao, Dun; Chen, Pengyu Optimal bilinear control of nonlinear Schrödinger equations with singular potentials. Nonlinear Anal.107 (2014), 12–21.
[2] Binhua Feng*,Zhao, Dun; Sun, Chunyou On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain. J. Math. Anal. Appl.416 (2014), no. 2, 901–923.
[1]Binhua Feng*, Zhao, Dun; Sun, Chunyou The limit behavior of solutions for the nonlinear Schrödinger equation including nonlinear loss/gain with variable coefficient. J. Math. Anal. Appl.405 (2013), no. 1, 240–251.